An Algebraic Approach to Internet Routing Part II

Timothy G. Griffin

timothy.griffin@cl.cam.ac.uk Computer Laboratory University of Cambridge, UK

Departamento de Ingeniería Telemática Escuela Politécnica Superior Universidad Carlos III de Madrid 16, 17, 18 March, 2009

A (10) A (10) A (10)

(Modified) Outline

- Part I (Monday)
 - Review of classical theory
- Part II (Tuesday)
 - Functions as arc weights
 - Live dangerously drop distribution!
 - ★ Model BGP-like protocols
- Part III (Wednesday)
 - Present a constructive approach
 - Metarouting

Path Weight with functions on arcs?

Semiring Path Weight

Path $p = i_1, i_2, i_3, \cdots, i_k$,

$$w(p) = w(i_1, i_2) \otimes w(i_2, i_3) \otimes \cdots \otimes w(i_{k-1}, i_k).$$

How about functions on arcs?

For graph G = (V, E) with $w : E \rightarrow (S \rightarrow S)$

$$w(p) = w(i_1, i_2)(w(i_2, i_3)(\cdots w(i_{k-1}, i_k)(a)\cdots)),$$

where *a* is some value originated by node i_k

How can we make this work?

イロト イポト イラト イラト

ASPATHs from BGP

- Think of ASPATHs in BGP.
- the type of "arc labels" and the path values are different.
- So binary operators don't quite work.

We could model this as some kind of function on the arc.

T. Griffin (cl.cam.ac.uk)

An Algebraic Approach to Internet Routing Pa

(left) Cayley transformation

Let's turn the multiplicative semigroup into a set of functions in order to get some inspiration!

• (S, \otimes) a semigroup

• For $a \in S$, define the function f_a so that for all $b \in S$, $f_a(b) = a \otimes b$

• Let $F_{\otimes} = \{f_a \mid a \in S\}$

The notation $h = f \circ g$ means that for all a, h(a) = f(g(a)).

Lemma

If $f, g \in F_{\otimes}$, then $f \circ g \in F_{\otimes}$.

Proof :

$$(f_a \circ f_b)(c) = f_a(f_b(c)) = a \otimes (b \otimes c) = (a \otimes b) \otimes c = f_{a \otimes b}(c)$$

< 口 > < 同 > < 回 > < 回 > < 回 > <

How do properties translate?

$$\begin{array}{c|c} (S, \oplus, \otimes) & (S, \oplus, F_{\otimes}) \\ \hline a \otimes (b \oplus c) = (a \otimes b) \oplus (a \otimes c) & f(b \oplus c) = f(b) \oplus f(c) \\ \alpha_{\oplus} = \omega_{\otimes} & f(\alpha_{\oplus}) = \alpha_{\oplus} \\ \alpha_{\oplus} = \omega_{\otimes} & \exists \omega \in F \ \forall a \in S : \omega(a) = \alpha_{\oplus} \\ \exists \alpha_{\otimes} & \exists i \in F \ \forall a \in S : i(a) = a \end{array}$$

Can we generalize this to a new kind of algebraic structure?

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Algebra of Monoid Endomorphisms ([GM08])

A homomorphism is a function that preserves structure. An endomprhism is a homomorphism mapping a structure to itself.

Let (S, \oplus, α) be a commutative monoid.

 $(S, \oplus, F \subseteq S \to S)$ is a algebra of monoid endomorphisms (AME) if • $\forall f \in F \ \forall b, c \in S : f(b \oplus c) = f(b) \oplus f(c)$ • $\forall f \in F : f(\alpha) = \alpha$ • $\exists i \in F \ \forall a \in S : i(a) = a$ • $\exists \omega \in F \ \forall a \in S : \omega(a) = \alpha$

Solving (some) equations over a AMEs

We will be interested in solving for x equations of the form

 $x = f(x) \oplus b$

Let

$$\begin{array}{rcl} f^0 &=& i\\ f^{k+1} &=& f \mathrel{\circ} f^k \end{array}$$

and

$$\begin{array}{rcl} f^{(k)}(b) & = & f^0(b) \ \oplus \ f^1(b) \ \oplus \ f^2(b) \ \oplus \ \cdots \ \oplus \ f^k(b) \\ f^{(*)}(b) & = & f^0(b) \ \oplus \ f^1(b) \ \oplus \ f^2(b) \ \oplus \ \cdots \ \oplus \ f^k(b) \ \oplus \ \cdots \end{array}$$

Definition (q stability)

If there exists a *q* such that for all b $f^{(q)}(b) = f^{(q+1)}(b)$, then *f* is *q*-stable. Therefore, $f^{(*)}(b) = f^{(q)}(b)$.

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Key result (again)

Lemma

If f is q-stable, then $x = f^{(*)}(b)$ solves the AME equation

 $x = f(x) \oplus b$.

Proof: Substitute $f^{(*)}(b)$ for x to obtain

$$\begin{array}{rcl} f(f^{(*)}(b)) \oplus b \\ = & f(f^{(q)}(b)) \oplus b \\ = & f(f^{0}(b) \oplus f^{1}(b) \oplus f^{2}(b) \oplus \cdots \oplus f^{q}(b)) \oplus b \\ = & f^{1}(b) \oplus f^{1}(b) \oplus f^{2}(b) \oplus \cdots \oplus f^{q+1}(b) \oplus b \\ = & f^{0}(b) \oplus f^{1}(b) \oplus f^{1}(b) \oplus f^{2}(b) \oplus \cdots \oplus f^{q+1}(b) \\ = & f^{(q+1)}(b) \\ = & f^{(q)}(b) \\ = & f^{(*)}(b) \end{array}$$

• • • • • • • • • • • •

AME of Matrices

Given an AME $S = (S, \oplus, F)$, define the semiring of $n \times n$ -matrices over S,

 $\mathbb{M}_n(S) = (\mathbb{M}_n(S), \boxplus, G),$

where for $\mathbf{A}, \mathbf{B} \in \mathbb{M}_n(S)$ we have

$$(\mathbf{A} \boxplus \mathbf{B})(i, j) = \mathbf{A}(i, j) \oplus \mathbf{B}(i, j).$$

Elements of the set *G* are represented by $n \times n$ matrices of functions in *F*. That is, each function in *G* is represented by a matrix **A** with $\mathbf{A}(i, j) \in F$. If $\mathbf{B} \in \mathbb{M}_n(S)$ then define $\mathbf{A}(\mathbf{B})$ so that

$$(\mathbf{A}(\mathbf{B}))(i, j) = \sum_{1 \le q \le n}^{\oplus} \mathbf{A}(i, q)(\mathbf{B}(q, j)).$$

く 戸 と く ヨ と く ヨ と …

Here we go again...

Path Weight

For graph G = (V, E) with $w : E \to F$ The *weight* of a path $p = i_1, i_2, i_3, \dots, i_k$ is then calculated as

$$w(p) = w(i_1, i_2)(w(i_2, i_3)(\cdots w(i_{k-1}, i_k)(\omega_{\oplus})\cdots)).$$

adjacency matrix

$$\mathbf{A}(i, j) = \left\{ egin{array}{cc} w(i, j) & ext{if } (i, j) \in E, \ \omega & ext{otherwise} \end{array}
ight.$$

We want to solve equations like these

$$\mathbf{X} = \mathbf{A}(\mathbf{X}) \boxplus \mathbf{B}$$

3

イロト 不得 トイヨト イヨト

So why do we need Monoid Endomorphisms??

Monoid Endomorphisms can be viewed as semirings

Suppose (S, \oplus, F) is a monoid of endomorphisms. We can turn it into a semiring

where $(f \oplus g)(a) = f(a) \oplus g(a)$

Functions are hard to work with....

• All algorithms need to check equality over elements of semiring,

•
$$f = g$$
 means $\forall a \in S : f(a) = g(a)$,

• S can be very large, or infinite.

Lexicographic product of AMEs

$$(S, \oplus_S, F) \times (T, \oplus_T, G) = (S \times T, \oplus_S \times \oplus_T, F \times G)$$

Theorem ([Sai70, GG07, Gur08])

 $\mathsf{M}(S \stackrel{\scriptstyle{\scriptstyle{\times}}}{\scriptstyle{\times}} T) \iff \mathsf{M}(S) \land \mathsf{M}(T) \land (\mathsf{C}(S) \lor \mathsf{K}(T))$

Where

Property Definition

 $\begin{array}{ll} \mathsf{M} & \forall a, b, f : f(a \oplus b) = f(a) \oplus f(b) \\ \mathsf{C} & \forall a, b, f : f(a) = f(b) \Longrightarrow a = b \\ \mathsf{K} & \forall a, b, f : f(a) = f(b) \end{array}$

∃ ► < ∃ ►</p>

Functional Union of AMEs

$$(S, \oplus, F) +_m (S, \oplus, G) = (S, \oplus, F \cup G)$$

$$\mathsf{M}(\mathcal{S}+_{\mathrm{m}} \mathcal{T}) \iff \mathsf{M}(\mathcal{S}) \land \mathsf{M}(\mathcal{T})$$

Where $\frac{\text{Property} \quad \text{Definition}}{M} \quad \forall a, b, f : f(a \oplus b) = f(a) \oplus f(b)$

Left and Right

right

$$\mathsf{right}(S,\oplus,F) = (S,\oplus,\{i\})$$

left

$$\mathsf{left}(\mathcal{S},\oplus,\mathcal{F})=(\mathcal{S},\oplus,\mathcal{K}(\mathcal{S}))$$

where K(S) represents all constant functions over S. For $a \in S$, define the function $\kappa_a(b) = a$. Then $K(S) = \{\kappa_a \mid a \in S\}$.

Facts

The following are always true.

```
 \begin{split} &\mathsf{M}(\mathsf{right}(S)) \\ &\mathsf{M}(\mathsf{left}(S)) \\ &\mathsf{C}(\mathsf{right}(S)) \\ &\mathsf{K}(\mathsf{left}(S)) \end{split}
```

(assuming \oplus is idempotent)

Motivate Scoped product

T. Griffin (cl.cam.ac.uk)

An Algebraic Approach to Internet Routing Pa

UC3M 03/2009 16 / 45

æ

イロト イポト イヨト イヨト

Scoped Product

$S\Theta T = (S \times \text{left}(T)) +_{m} (\text{right}(S) \times T)$

Theorem

 $\mathsf{M}(S\Theta T) \iff \mathsf{M}(S) \wedge \mathsf{M}(T).$

Proof.

 $\begin{array}{l} \mathsf{M}(S \ominus T) \\ \mathsf{M}((S \lor \mathsf{left}(T)) +_{\mathsf{m}} (\mathsf{right}(S) \lor T)) \\ \Longleftrightarrow \mathsf{M}(S \lor \mathsf{left}(T)) \land \mathsf{M}(\mathsf{right}(S) \lor T) \\ \Leftrightarrow \mathsf{M}(S) \land \mathsf{M}(\mathsf{left}(T)) \land (\mathsf{C}(S) \lor \mathsf{K}(\mathsf{left}(T))) \\ \land \mathsf{M}(\mathsf{right}(S)) \land \mathsf{M}(T) \land (\mathsf{C}(\mathsf{right}(S)) \lor \mathsf{K}(T)) \\ \Leftrightarrow \mathsf{M}(S) \land \mathsf{M}(T) \end{array}$

Delta Product (OSPF-like?)

$$S\Delta T = (S \times T) +_{\mathrm{m}} (\mathsf{right}(S) \times T)$$

Theorem

$$\mathsf{M}(S\Delta T) \iff \mathsf{M}(S) \land \mathsf{M}(T) \land (\mathsf{C}(S) \lor \mathsf{K}(T)).$$

Proof.

 $\begin{array}{l} \mathsf{M}(S \ominus T) \\ \mathsf{M}((S \stackrel{\times}{\times} T) +_{\mathrm{m}} (\mathbf{right}(S) \stackrel{\times}{\times} T)) \\ \Longleftrightarrow \mathsf{M}(S \stackrel{\times}{\times} T) \land \mathsf{M}(\mathbf{right}(S) \stackrel{\times}{\times} T) \\ \Leftrightarrow \mathsf{M}(S) \land \mathsf{M}(\mathbf{left}(T)) \land (\mathsf{C}(S) \lor \mathsf{K}(T)) \\ \land \mathsf{M}(\mathbf{right}(S)) \land \mathsf{M}(T) \land (\mathsf{C}(\mathbf{right}(S)) \lor \mathsf{K}(T)) \\ \Leftrightarrow \mathsf{M}(S) \land \mathsf{M}(T) \land (\mathsf{C}(S) \lor \mathsf{K}(T)) \end{array}$

How do we represent functions?

Definition (Action)

An action (S, L, \Diamond) is made up of non-empty sets S and L, and a function

 $\Diamond \in L \rightarrow (S \rightarrow S).$

We often write $I \Diamond s$ rather than $\Diamond (I)(s)$.

Think of *L* as an index set for a set of functions, $f_l(s) = l \Diamond s$.

Example : mildly abstract description of ASPATHs Let $apaths(X) = (S, L, \Diamond)$ where

$$S = X^* \cup \{\infty\}$$

$$L = X \times X$$

$$(m, n) \Diamond \infty = \infty$$

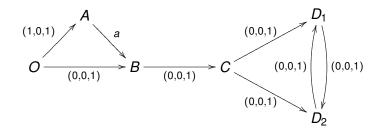
$$(m, n) \Diamond I = \begin{cases} \cos(n, l) & (\text{if } m \notin l) \\ \infty & (\text{otherwise}) \end{cases}$$

Could BGP be distributive?

- Suppose bgp = ebgp⊖ibgp
- For M(bgp) to hold, we need at least M(ebgp)
- Suppose ebgp = economics \vec{x} aspaths \vec{x} te
- This means we must have M(economics) and C(economics) since we will never have κ(aspaths x te).

What if we drop the distribution requirement?

 $\textbf{\textit{R}} = (\{0,1\}, \max, \min) \stackrel{\scriptstyle \times}{\scriptstyle \times} (\{0,1\}, \min, \max) \stackrel{\scriptstyle \times}{\scriptstyle \times} (\mathbb{N} \cup \{\infty\}, \min, +).$



Progress of the iteration when a = (1, 0, n)

step	A	В	С	D_1	D_2
1	(1,0,1)	(0,0,1)			
2	(1,0,1)	(1,0, <i>n</i> +1)	(0,0,2)		
3	(1,0,1)	(1, 0, n+1)	(0, 0, n+2)	(0, 0, 3)	(0, 0, 3)
4	(1,0,1)	(1, 0, n+1)	(0, 0, n+2)	(0, 0, 4)	(0, 0, 4)
5	(1,0,1)	(1, 0, n+1)	(0, 0, n+2)	(0, 0, 5)	(0, 0, 5)
÷	÷	÷	÷	÷	:
<i>n</i> +3	(1,0,1)	(1,0, <i>n</i> +1)	(0, 0, n+2)	(0, 0, n+3)	(0, 0, n+3)

э

Progress of the iteration when a = (1, 1, 1)

step	A	В	С	D_1	D_2
1	(1,0,1)	(0,0,1)			
2	(1,0,1)	(1, 1, 2)	(0,0,2)		—
3	(1,0,1)	(1, 1, 2)	(0, 1, 3)	(0, 0, 3)	(0, 0, 3)
4	(1,0,1)	(1, 1, 2)	(0, 1, 3)	(0, 0, 4)	(0, 0, 4)
5	(1,0,1)	(1,1,2)	(0,1,3)	(0, 0, 5)	(0, 0, 5)
÷	:	÷	÷	:	
k	(1,0,1)	(1,1,2)	(0,1,3)	(0, 0, k)	(0, 0, k)
÷	:	÷	÷	÷	÷

э

<ロ> <問> <問> < 回> < 回> 、

What are the conditions needed if distribution is dropped?

For a non-distributed structure $S = (S, \oplus, F)$, can be used to find local optima when the following property holds.

Increasing

$$I: \forall a \in S: a \neq \alpha \implies a <^{\mathrm{L}}_{\oplus} f(a)$$

In order to derive I we often need the non-decreasing property:

$$\mathsf{ND}: \forall a \in S : a \leq^{\mathrm{L}}_{\oplus} f(a)$$

Some Rules

$$\begin{split} \mathsf{I}(S \times T) &\iff \mathsf{I}(S) \lor (\mathsf{ND}(S) \land \mathsf{I}(T)) \\ \mathsf{ND}(S \times T) &\iff \mathsf{I}(S) \lor (\mathsf{ND}(S) \land \mathsf{ND}(T)) \\ \mathsf{I}(S +_m T) &\iff \mathsf{I}(S) \land \mathsf{I}(T) \\ \mathsf{ND}(S +_m T) &\iff \mathsf{ND}(S) \land \mathsf{ND}(T) \\ \mathsf{I}(S \Theta T) &\iff \mathsf{I}(S) \land \mathsf{I}(T) \end{split}$$

T. Griffin (cl.cam.ac.uk)

An Algebraic Approach to Internet Routing Pa

UC3M 03/2009 25 / 45

2

ヘロン 人間と 人間と 人間と

Could BGP be fixed?

- Suppose bgp = ebgp⊖ibgp
- For I(bgp) to hold, we need at least ND(ebgp)
- Suppose ebgp = economics \vec{x} aspaths \vec{x} te
- Since we can probably get $I(aspaths \times te)$, all we need is ND(economics).

One Modest Proposal

The Customer/Provider/Peer	r Algebra ([Sob05])
----------------------------	---------------------

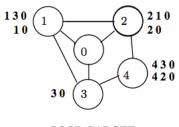
\diamond	C	R	Ρ	∞
С	С	∞	∞	∞
r	R	R	∞	∞
р	P	Ρ	Ρ	∞

Improve to model backup routes ([GS05])								
\Diamond	(1, <i>C</i>)	(1, <i>R</i>)	(1, <i>P</i>)	(2, <i>C</i>)	(2, <i>R</i>)	(2, <i>P</i>)	(3, <i>C</i>)	(3, F
С	(1, <i>C</i>)	(2, <i>C</i>)	(2, <i>C</i>)	(2, <i>C</i>)	(3, <i>C</i>)	(3, <i>C</i>)	(3, <i>C</i>)	∞
r	(1, <i>R</i>)	(1, <i>R</i>)	(2, <i>R</i>)	(2, <i>R</i>)	(2, R)	(3, <i>R</i>)	(3, <i>R</i>)	(3, F
р	(1, <i>P</i>)	(1, <i>P</i>)	(1, <i>P</i>)	(2, <i>P</i>)	(2, <i>P</i>)	(2, <i>P</i>)	(3, <i>P</i>)	(3, P

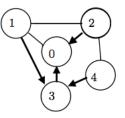
This is an algebraic presentation of an idea that appeared earlier in [GGR01].

A (10) A (10) A (10)

Prehistory : The Stable Paths Problem (SPP) [GSW02]

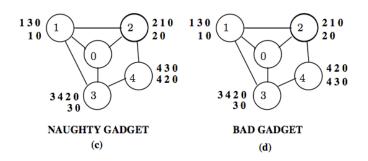


GOOD GADGET (a)



э

More SPP examples



UC3M 03/2009 29 / 45

æ

イロト イヨト イヨト イヨト

Proof from [GG08]

Assumptions

• Let $S = (S, \oplus, \otimes)$ be a bisemigroup where

- \oplus is idempotent ($a = a \oplus a$)
- \oplus is commutative ($a \oplus b = b \oplus a$)
 - \oplus is selective ($a \oplus b = a \lor a \oplus b = b$)
- Note that this means that $\leq = \leq_{\oplus}^{L}$ is a total order.
- α_{\oplus} and α_{\otimes} exist

• $\alpha_{\oplus} = \omega_{\otimes}$

Assume that S is increasing

$$\mathsf{I}: \forall \mathbf{a}, \mathbf{b} \in \mathbf{S}: \mathbf{a} \neq \alpha_{\oplus} \implies \mathbf{a} <^{\mathrm{L}}_{\oplus} \mathbf{b} \otimes \mathbf{a}$$

3

イロト 不得 トイヨト イヨト

$$s_{(i,j)}^k$$

Let *A* be an adjacency matrix over *S*. Since \oplus is selective, for each $i \neq j$ there exists $s_{(i,i)}^k \in N(i) \equiv \{s \mid (i,s) \in E\}$ such that

$$\mathcal{A}^{[k+1]}(i, j) = \sum_{s \in \mathcal{N}(i)} w(i, s) \otimes \mathcal{B}(s, j) = w(i, \frac{s^k}{s^{(i,j)}}) \otimes \mathcal{A}^{[k]}(\frac{s^k}{s^{(i,j)}}, j)$$

We assume that we have a deterministic method of selecting a unique $s_{(i,j)}^k$.

Histories

Histories

- Inspired by constructs of the same name in [GW00] that record causal chains of events in an asynchronous protocol.
- The history of $A^{[k]}(i, j)$, denoted $H^{[k]}(i, j)$, will in some sense explain how the value $A^{[k]}(i, j)$ came to be adopted at step k of the iteration.

$$\begin{aligned} H^{[0]}(i, j) &= (\alpha_{\otimes}) \\ H^{[k+1]}(i, j) &= \begin{cases} H^{[k]}(i, j) & \text{if } A^{[k]}(i, j) = A^{[k+1]}(i, j), \\ H^{[k]}(s^{k}_{(i,j)}, j), A^{[k+1]}(i, j) & \text{if } A^{[k+1]}(i, j) <_{L}^{\oplus} A^{[k]}(i, j) \\ H^{[k]}(s^{k-1}_{(i,j)}, j), A^{[k]}(i, j) & \text{if } A^{[k]}(i, j) <_{L}^{\oplus} A^{[k+1]}(i, j) \end{cases}$$

A B A A B A

Observations

- If A^[k+1](i, j) <[⊕]_L A^[k](i, j), then node i obtained a more preferred value at step k + 1.
 - ► In this case the history H^[k+1](i, j) is the sequence H^[k](s^k_(i,j), j), A^[k+1](i, j), where H^[k](s^k_(i,j), j) is a history explaining how value A^[k](s^k_(i,j), j) was adopted at state k.
 - Since $A^{[k+1]}(i, j) = w(i, s^k_{(i,j)}) \otimes A^{[k]}(s^k_{(i,j)}, j)$, the complete history explains how $A^{[k+1]}(i, j)$ was adopted at step k + 1.

Further observations

- On the other hand, when A^[k](i, j) <[⊕]_L A^[k+1](i, j), then node i lost a more preferred value at step k + 1.
 - ► In this case the history $H^{[k+1]}(i, j)$ is the sequence $H^{[k]}(s_{(i,j)}^{k-1}, j), A^{[k]}(i, j)$, which ends in the value lost at step k + 1.
 - Since this lost value is A^[k](i, j) = w(i, s^{k-1}_(i,j)) ⊗ A^[k-1](s^{k-1}_(i,j), j), the sequence H^[k](s^{k-1}_(i,j), j) explains how node s^{k-1}_(i,j) came to adopt A^[k](s^{k-1}_(i,j), j) at step k, thus forcing node i to abandon A^[k](i, j) at step k + 1.

Violations of Monotonicity

(left) Monotonicity

$$\forall a, b, c \in S : a \leq b \rightarrow c \otimes a \leq c \otimes b.$$

Define the dispute relation D_S to record violations of montonicity:

$$D_{S} \equiv \{ (a, c \otimes b) \mid a, b, c \in S, a \leq b \land c \otimes b < c \otimes a \}$$

In addition, define a relation

$$T_{S} \equiv \{(a, b \otimes a) \mid a, b \in S, b \neq \alpha_{\otimes}\}.$$

Generalized dispute digraph

The generalized dispute digraph is then defined as the relation

$$\mathfrak{D}_{\mathcal{S}}=(T_{\mathcal{S}}\cup D_{\mathcal{S}})^{tc},$$

where tc denotes the transitive closure.

T. Griffin (cl.cam.ac.uk)

Increasing

Lemma

If S is increasing, then $\mathfrak{D}_S \subseteq <.$

Proof: If $(a, b \otimes a) \in T_S$, then if *S* is increasing we have $a < b \otimes a$. If $(a, c \otimes b) \in D_S$, then $a \leq b$, and if *S* is increasing then $b < c \otimes b$, so $a < c \otimes b$.

4 **A** N A **B** N A **B** N

Two Lemmas ...

A \mathfrak{D}_S sequence σ is

- any non-empty sequence of values over S
- such that if *σ* = *a*₁, *a*₂, ..., *a*_k, for 2 ≤ *k*, then for each 1 ≤ *i* < *k* we have (*a*_i, *a*_{i+1}) ∈ 𝔅_S.

Lemma

For each k, i, and j, $H^{[k]}(i, j)$ is a \mathfrak{D}_S sequence.

Lemma

Suppose that $A^{[k]}(i, j) \neq A^{[k+1]}(i, j)$, then $|H^{[k+1]}(i, j)| = k + 1$.

... and a Theorem

Theorem

If *S* is an increasing bisemigroup and only simple paths are allowed, then there must exist a *k* such that $A^{[k]} = A^{[k+1]}$. Thus $B = A^{[k]}$ is a solution to the equation $B = I \oplus (A \otimes B)$.

Proof : Suppose that *k* does not exist. Since only simple paths are allowed, the set of values w(p) for all paths *p* is finite. Since histories must grow without bound there must at some point be an *a* such that $(a, a) \in \mathfrak{D}_S$, which contradicts Lemma 7.

Remark

SPP theory also used the concept of *dispute wheels* while Sobrinho's theory [Sob05] used the related concept of *non-free cycles*. These concepts are related to generalized dispute digraphs.

・ロト ・ 四ト ・ ヨト ・ ヨト …

A few lemmas

Lemma

Suppose that $a_1 \mathfrak{R}_S a_2 \mathfrak{R}_S a_3$. That is, there exists b_1 and b_2 such that

$$a_1 \leq^{\otimes}_R b_1 \otimes a_1 <^{\oplus}_L a_2 \leq^{\otimes}_R b_2 \otimes a_2 <^{\oplus}_L a_3.$$

Then either $a_1 \leq_R^{\otimes} a_3$ or $(b_1 \otimes a_1, b_2 \otimes a_2) \in \mathfrak{D}_S$.

Corollary

If $(a, a) \in \mathfrak{R}_S$, then $(a, a) \in \mathfrak{D}_S$.

In particular, if S is an increasing bisemigroup, then we know that all cycles are free and that dispute wheels cannot exist.

A D K A B K A B K A B K B B

The proof is by induction on *k*. The base case is clear. Suppose every entry of $H^{[k]}$ is a \mathfrak{D}_S sequence. The analysis of $H^{[k+1]}(i, j)$ is in three cases.

Case 1 : $A^{[k]}(i, j) = A^{[k+1]}(i, j)$. Then $H^{[k+1]}(i, j) = H^{[k]}(i, j)$ and the claim holds.

Proof of Lemma 8

bf Case 2: $A^{[k+1]}(i, j) < A^{[k]}(i, j)$, so we have

 $\begin{array}{lll} w(i,s_{(i,j)}^k) \otimes A^{[k]}(s_{(i,j)}^k,\,j) &< & w(i,s_{(i,j)}^{k-1}) \otimes A^{[k-1]}(s_{(i,j)}^{k-1},\,j) \\ &\leq & w(i,s_{(i,j)}^k) \otimes A^{[k-1]}(s_{(i,j)}^k,\,j). \end{array}$

So $H^{[k+1]}(i, j) = H^{[k]}(s_{(i,j)}^k, j)$, $A^{[k+1]}(i, j)$, and there are three sub-cases to consider:

Case 2.1: $A^{[k-1]}(s_{(i,i)}^k, j) = A^{[k]}(s_{(i,i)}^k, j)$. This is not possible. Case 2.2: $A^{[k]}(s_{(i,i)}^k, j) < A^{[k-1]}(s_{(i,i)}^k, j)$. Then $(A^{[k]}(s^{k}_{(i,i)}, j), w(i, s^{k}_{(i,i)}) \otimes A^{[k]}(s^{k}_{(i,i)}, j))$ is in T_{S} , and since $H^{[k]}(s_{(i,i)}^{k}, j)$ ends in $A^{[k]}(s_{(i,j)}^{k}, j)$, it follows that $H^{[k+1]}(i, j)$ is a $\mathfrak{D}_{\mathfrak{S}}$ sequence. Case 2.3: $A^{[k-1]}(s_{(i,i)}^k, j) < A^{[k]}(s_{(i,i)}^k, j)$. Then $(A^{[k-1]}(s_{(i,i)}^k, j), A^{[k+1]}(i, j))$ is in D_S , and since $H^{[k]}(s_{(i,i)}^k, j)$ ends in the value $A^{[k-1]}(s_{(i,i)}^k, j)$, it follows that $H^{[k+1]}(i, j)$ is a \mathfrak{D}_S sequence.

Proof of Lemma 8 **Case 3:** $A^{[k]}(i, j) < A^{[k+1]}(i, j)$, so we have $w(i, s_{(i,i)}^{k-1}) \otimes A^{[k-1]}(s_{(i,i)}^{k-1}, j) < w(i, s_{(i,i)}^{k}) \otimes A^{[k]}(s_{(i,i)}^{k}, j)$ $\leq w(i, s_{(i,i)}^{k-1}) \otimes A^{[k]}(s_{(i,i)}^{k-1}, j).$ In this case $H^{[k+1]}(i, j) = H^{[k]}(s_{(i,j)}^{k-1}, j), A^{[k]}(i, j)$. There are three sub-cases to consider: Case 3.1: $A^{[k-1]}(s_{(i,i)}^{k-1}, j) = A^{[k]}(s_{(i,i)}^{k-1}, j)$. This is not possible. Case 3.2: $A^{[k]}(s_{(i,i)}^{k-1}, j) < A^{[k-1]}(s_{(i,i)}^{k-1}, j)$. Then $(A^{[k]}(s_{(i,i)}^{k-1}, j), w(i, s_{(i,i)}^{k-1}) \otimes A^{[k-1]}(s_{(i,i)}^{k-1}, j)) \in D_{S},$ and since $H^{[k]}(s_{(i,i)}^{k-1}, j)$ ends in $A^{[k]}(s_{(i,i)}^{k-1}, j), H^{[k+1]}(i, j)$ is a \mathfrak{D}_{S} sequence. Case 3.3: $A^{[k-1]}(s_{(i,i)}^{k-1}, j) < A^{[k]}(s_{(i,i)}^{k-1}, j)$. Then $H^{[k]}(s_{(i,i)}^{k-1}, j)$ ends in the value $A^{[k-1]}(s_{(i,i)}^{k-1}, j)$, and $(A^{[k-1]}(s^{k-1}_{(i,j)}, j), w(i, s^{k-1}_{(i,j)}) \otimes A^{[k-1]}(s^{k-1}_{(i,j)}, j)) \in T_{S},$

Bibliography I

- [GG07] A. Gurney and T. G. Griffin. Lexicographic products in metarouting. In *Proc. Inter. Conf. on Network Protocols*, October 2007.
- [GG08] T. G. Griffin and A. Gurney.
 Increasing bisemigroups and algebraic routing.
 In 10th International Conference on Relational Methods in Computer Science (RelMiCS10), April 2008.
- [GGR01] Timothy G. Griffin, Lixin Gao, and Jennifer Rexford. Inherently safe backup routing with BGP. In *Proc. IEEE INFOCOM*, April 2001.

[GM08] M. Gondran and M. Minoux. Graphs, Dioids, and Semirings : New Models and Algorithms. Springer, 2008.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Bibliography II

[GS05] Timothy G. Griffin and João Luís Sobrinho. Metarouting. In *Proc. ACM SIGCOMM*, August 2005.

[GSW02] Timothy G. Griffin, F. Bruce Shepherd, and Gordon Wilfong. The stable paths problem and interdomain routing. *IEEE/ACM Transactions on Networking*, 10(2):232–243, April 2002.

[Gur08] Alexander Gurney. Designing routing algebras with meta-languages. Thesis in progress, 2008.

[GW00] Timothy Griffin and Gordon Wilfong. A safe path vector protocol. In *Proc. IEEE INFOCOM*, March 2000.

A (10) A (10)

Bibliography III

[Sai70] Tôru Saitô. Note on the lexicographic product of ordered semigroups. *Proceedings of the Japan Academy*, 46(5):413–416, 1970.

[Sob05] Joao Luis Sobrinho. An algebraic theory of dynamic network routing. *IEEE/ACM Transactions on Networking*, 13(5):1160–1173, October 2005.

EN 4 EN