An Algebraic Approach to Internet Routing Part II

Timothy G. Griffin

```
timothy.griffin@cl.cam.ac.uk
            Computer Laboratory
University of Cambridge, UK
```

Departamento de Ingeniería Telemática
Escuela Politécnica Superior
Universidad Carlos III de Madrid 16, 17, 18 March, 2009

(Modified) Outline

- Part I (Monday)
- Review of classical theory
- Part II (Tuesday)
- Functions as arc weights
- Live dangerously - drop distribution!
* Model BGP-like protocols
- Part III (Wednesday)
- Present a constructive approach
- Metarouting

Path Weight with functions on arcs?

Semiring Path Weight

Path $p=i_{1}, i_{2}, i_{3}, \cdots, i_{k}$,

$$
w(p)=w\left(i_{1}, i_{2}\right) \otimes w\left(i_{2}, i_{3}\right) \otimes \cdots \otimes w\left(i_{k-1}, i_{k}\right)
$$

How about functions on arcs?
For graph $G=(V, E)$ with $w: E \rightarrow(S \rightarrow S)$

$$
w(p)=w\left(i_{1}, i_{2}\right)\left(w\left(i_{2}, i_{3}\right)\left(\cdots w\left(i_{k-1}, i_{k}\right)(a) \cdots\right)\right)
$$

where a is some value originated by node i_{k}
How can we make this work?

ASPATHs from BGP

- Think of ASPATHs in BGP.
- the type of "arc labels" and the path values are different.
- So binary operators don't quite work.

We could model this as some kind of function on the arc.

(left) Cayley transformation

Let's turn the multiplicative semigroup into a set of functions in order to get some inspiration!

- (S, \otimes) a semigroup
- For $a \in S$, define the function f_{a} so that for all $b \in S, f_{a}(b)=a \otimes b$
- Let $F_{\otimes}=\left\{f_{a} \mid a \in S\right\}$

The notation $h=f \circ g$ means that for all $a, h(a)=f(g(a))$.

Lemma

If $f, g \in F_{\otimes}$, then $f \circ g \in F_{\otimes}$.
Proof :

$$
\left(f_{a} \circ f_{b}\right)(c)=f_{a}\left(f_{b}(c)\right)=a \otimes(b \otimes c)=(a \otimes b) \otimes c=f_{a \otimes b}(c)
$$

How do properties translate?

$$
\begin{array}{c|c}
(S, \oplus, \otimes) & \left(S, \oplus, F_{\otimes}\right) \\
\hline \boldsymbol{a} \otimes(b \oplus c)=(a \otimes b) \oplus(a \otimes c) & f(b \oplus c)=f(b) \oplus f(c) \\
\alpha_{\oplus}=\omega_{\otimes} & f\left(\alpha_{\oplus}\right)=\alpha_{\oplus} \\
\alpha_{\oplus}=\omega_{\otimes} & \exists \omega \in F \forall a \in S: \omega(a)=\alpha_{\oplus} \\
\exists \alpha_{\otimes} & \exists i \in F \forall a \in S: i(a)=a
\end{array}
$$

Can we generalize this to a new kind of algebraic structure?

Algebra of Monoid Endomorphisms ([GM08])

A homomorphism is a function that preserves structure. An endomprhism is a homomorphism mapping a structure to itself.

Let (S, \oplus, α) be a commutative monoid.
$(S, \oplus, F \subseteq S \rightarrow S$) is a algebra of monoid endomorphisms (AME) if

- $\forall f \in F \forall b, c \in S: f(b \oplus c)=f(b) \oplus f(c)$
- $\forall f \in F: f(\alpha)=\alpha$
- $\exists i \in F \forall a \in S: i(a)=a$
- $\exists \omega \in F \forall a \in S: \omega(a)=\alpha$

Solving (some) equations over a AMEs

We will be interested in solving for x equations of the form

$$
x=f(x) \oplus b
$$

Let

$$
\begin{aligned}
f^{0} & =i \\
f^{k+1} & =f \circ f^{k}
\end{aligned}
$$

and

$$
\begin{aligned}
& f^{(k)}(b)=f^{0}(b) \oplus f^{1}(b) \oplus f^{2}(b) \oplus \cdots \oplus f^{k}(b) \\
& f^{(*)}(b)=f^{0}(b) \oplus f^{1}(b) \oplus f^{2}(b) \oplus \cdots \oplus f^{k}(b) \oplus \cdots
\end{aligned}
$$

Definition (q stability)

If there exists a q such that for all $b f^{(q)}(b)=f^{(q+1)}(b)$, then f is q-stable. Therefore, $f^{(*)}(b)=f^{(q)}(b)$.

Key result (again)

Lemma

If f is q-stable, then $x=f^{(*)}(b)$ solves the AME equation

$$
x=f(x) \oplus b
$$

Proof: Substitute $f^{(*)}(b)$ for x to obtain

$$
\begin{aligned}
& f\left(f^{(*)}(b)\right) \oplus b \\
= & f(f(q)(b)) \oplus b \\
= & f\left(f^{0}(b) \oplus f^{1}(b) \oplus f^{2}(b) \oplus \cdots \oplus f^{q}(b)\right) \oplus b \\
= & f^{1}(b) \oplus f^{1}(b) \oplus f^{2}(b) \oplus \cdots \oplus f^{q+1}(b) \oplus b \\
= & f^{0}(b) \oplus f^{1}(b) \oplus f^{1}(b) \oplus f^{2}(b) \oplus \cdots \oplus f^{q+1}(b) \\
= & f^{(q+1)}(b) \\
= & f^{(q)}(b) \\
= & f^{(*)}(b)
\end{aligned}
$$

AME of Matrices

Given an AME $S=(S, \oplus, F)$, define the semiring of $n \times n$-matrices over S,

$$
\mathbb{M}_{n}(S)=\left(\mathbb{M}_{n}(S), \boxplus, G\right),
$$

where for $\mathbf{A}, \mathbf{B} \in \mathbb{M}_{n}(S)$ we have

$$
(\mathbf{A} \boxplus \mathbf{B})(i, j)=\mathbf{A}(i, j) \oplus \mathbf{B}(i, j) .
$$

Elements of the set G are represented by $n \times n$ matrices of functions in F. That is, each function in G is represented by a matrix \mathbf{A} with $\mathbf{A}(i, j) \in F$. If $\mathbf{B} \in \mathbb{M}_{n}(S)$ then define $\mathbf{A}(\mathbf{B})$ so that

$$
(\mathbf{A}(\mathbf{B}))(i, j)=\sum_{1 \leq q \leq n}^{\oplus} \mathbf{A}(i, q)(\mathbf{B}(q, j))
$$

Here we go again...

Path Weight

For graph $G=(V, E)$ with $w: E \rightarrow F$
The weight of a path $p=i_{1}, i_{2}, i_{3}, \cdots, i_{k}$ is then calculated as

$$
w(p)=w\left(i_{1}, i_{2}\right)\left(w\left(i_{2}, i_{3}\right)\left(\cdots w\left(i_{k-1}, i_{k}\right)\left(\omega_{\oplus}\right) \cdots\right)\right) .
$$

adjacency matrix

$$
\mathbf{A}(i, j)= \begin{cases}w(i, j) & \text { if }(i, j) \in E, \\ \omega & \text { otherwise }\end{cases}
$$

We want to solve equations like these

$$
\mathbf{X}=\mathbf{A}(\mathbf{X}) \boxplus \mathbf{B}
$$

So why do we need Monoid Endomorphisms??

Monoid Endomorphisms can be viewed as semirings
Suppose (S, \oplus, F) is a monoid of endomorphisms. We can turn it into a semiring

$$
(F, \hat{\oplus}, \circ)
$$

where $(f \hat{\oplus} g)(a)=f(a) \oplus g(a)$
Functions are hard to work with....

- All algorithms need to check equality over elements of semiring,
- $f=g$ means $\forall a \in S: f(a)=g(a)$,
- S can be very large, or infinite.

Lexicographic product of AMEs

$$
\left(S, \oplus_{S}, F\right) \overrightarrow{\times}\left(T, \oplus_{T}, G\right)=\left(S \times T, \oplus_{S} \overrightarrow{\times} \oplus_{T}, F \times G\right)
$$

Theorem ([Sai70, GG07, Gur08])

$$
\mathrm{M}(S \overrightarrow{\times} T) \Longleftrightarrow \mathrm{M}(S) \wedge \mathrm{M}(T) \wedge(\mathrm{C}(S) \vee \mathrm{K}(T))
$$

Where

Property	Definition
M	$\forall a, b, f: f(a \oplus b)=f(a) \oplus f(b)$
C	$\forall a, b, f: f(a)=f(b) \Longrightarrow a=b$
K	$\forall a, b, f: f(a)=f(b)$

Functional Union of AMEs

$$
(S, \oplus, F)+_{\mathrm{m}}(S, \oplus, G)=(S, \oplus, F \cup G)
$$

Fact

$$
\mathrm{M}(S+\mathrm{m} T) \Longleftrightarrow \mathrm{M}(S) \wedge \mathrm{M}(T)
$$

Where | Property | Definition |
| :--- | :--- |
| M | $\forall a, b, f: f(a \oplus b)=f(a) \oplus f(b)$ |

Left and Right

right

$$
\boldsymbol{\operatorname { r i g h t }}(S, \oplus, F)=(S, \oplus,\{i\})
$$

left

$$
\operatorname{left}(S, \oplus, F)=(S, \oplus, K(S))
$$

where $K(S)$ represents all constant functions over S. For $a \in S$, define the function $\kappa_{a}(b)=a$. Then $K(S)=\left\{\kappa_{a} \mid a \in S\right\}$.

Facts

The following are always true.
$\mathrm{m}(\operatorname{right}(S))$
$M(\operatorname{left}(S)) \quad$ (assuming \oplus is idempotent)
$C(\operatorname{right}(S))$
$\mathrm{K}(\operatorname{left}(S))$

Motivate Scoped product

Scoped Product

$$
S \Theta T=(S \overrightarrow{\times} \operatorname{left}(T))+_{\mathrm{m}}(\operatorname{right}(S) \overrightarrow{\times} T)
$$

Theorem

$$
\mathrm{M}(S \ominus T) \Longleftrightarrow \mathrm{M}(S) \wedge \mathrm{M}(T) .
$$

Proof.

$$
\begin{aligned}
& M(S \Theta T) \\
& M\left((S \overrightarrow{\times} \operatorname{left}(T))+_{\mathrm{m}}(\operatorname{right}(S) \overrightarrow{\times} T)\right) \\
\Longleftrightarrow & \mathrm{M}(S \overrightarrow{\times} \operatorname{left}(T)) \wedge \mathrm{M}(\operatorname{right}(S) \overrightarrow{\times} T) \\
\Longleftrightarrow & \mathrm{M}(S) \wedge \mathrm{M}(\operatorname{left}(T)) \wedge(\mathrm{C}(S) \vee \mathrm{K}(\operatorname{left}(T))) \\
& \wedge \mathrm{M}(\operatorname{right}(S)) \wedge \mathrm{M}(T) \wedge(\mathrm{C}(\operatorname{right}(S)) \vee \mathrm{K}(T)) \\
\Longleftrightarrow & \mathrm{M}(S) \wedge \mathrm{M}(T)
\end{aligned}
$$

Delta Product (OSPF-like?)

$$
S \Delta T=(S \overrightarrow{\times} T)+_{\mathrm{m}}(\operatorname{right}(S) \overrightarrow{\times} T)
$$

Theorem

$$
\mathrm{M}(S \Delta T) \Longleftrightarrow \mathrm{M}(S) \wedge \mathrm{M}(T) \wedge(\mathrm{C}(S) \vee \mathrm{K}(T)) .
$$

Proof.

m($S \ominus T$)
$\mathrm{m}\left((S \overrightarrow{\times} T)+_{\mathrm{m}}(\operatorname{right}(S) \overrightarrow{\times} T)\right)$
$\Longleftrightarrow \mathrm{M}(S \overrightarrow{\times} T) \wedge \mathrm{M}(\boldsymbol{\operatorname { r i g h t }}(S) \overrightarrow{\times} T)$
$\Longleftrightarrow \mathrm{M}(S) \wedge \mathrm{M}(\operatorname{left}(T)) \wedge(\mathrm{C}(S) \vee \mathrm{K}(T))$
$\wedge M(\operatorname{right}(S)) \wedge M(T) \wedge(C(\operatorname{right}(S)) \vee K(T))$
$\Longleftrightarrow M(S) \wedge M(T) \wedge(C(S) \vee K(T))$

How do we represent functions?

Definition (Action)

An action (S, L, \diamond) is made up of non-empty sets S and L, and a function

$$
\Delta \in L \rightarrow(S \rightarrow S) .
$$

We often write $/ \diamond s$ rather than $\diamond(I)(s)$.
Think of L as an index set for a set of functions, $\left.f_{l}(s)=/\right\rangle s$.
Example : mildly abstract description of ASPATHs
Let apaths $(X)=(S, L, \diamond)$ where

$$
\begin{aligned}
S & =X^{*} \cup\{\infty\} \\
L & =X \times X \\
(m, n) \diamond \infty & =\infty \\
(m, n) \diamond I & = \begin{cases}\operatorname{cons}(n, l) & \text { (if } m \notin I) \\
\infty & \text { (otherwise) }\end{cases}
\end{aligned}
$$

Could BGP be distributive?

- Suppose bgp = ebgpӨibgp
- For M(bgp) to hold, we need at least M(ebgp)
- Suppose ebgp $=$ economics $\overrightarrow{\times}$ aspaths $\overrightarrow{\times}$ te
- This means we must have M (economics) and C (economics) since we will never have $K($ aspaths $\overrightarrow{\times}$ te).

What if we drop the distribution requirement?

$$
R=(\{0,1\}, \max , \min) \vec{x}(\{0,1\}, \min , \max) \overrightarrow{\times}(\mathbb{N} \cup\{\infty\}, \min ,+) .
$$

Progress of the iteration when $a=(1,0, n)$

step	A	B	C	D_{1}	D_{2}
1	$(1,0,1)$	$(0,0,1)$	-	-	-
2	$(1,0,1)$	$(1,0, n+1)$	$(0,0,2)$	-	$-\overline{-}$
3	$(1,0,1)$	$(1,0, n+1)$	$(0,0, n+2)$	$(0,0,3)$	$(0,0,3)$
4	$(1,0,1)$	$(1,0, n+1)$	$(0,0, n+2)$	$(0,0,4)$	$(0,0,4)$
5	$(1,0,1)$	$(1,0, n+1)$	$(0,0, n+2)$	$(0,0,5)$	$(0,0,5)$
\vdots	\vdots	\vdots	\vdots	\vdots	\vdots
$n+3$	$(1,0,1)$	$(1,0, n+1)$	$(0,0, n+2)$	$(0,0, n+3)$	$(0,0, n+3)$

Progress of the iteration when $a=(1,1,1)$

step	A	B	C	D_{1}	D_{2}
1	$(1,0,1)$	$(0,0,1)$	-	-	-
2	$(1,0,1)$	$(1,1,2)$	$(0,0,2)$	-	-
3	$(1,0,1)$	$(1,1,2)$	$(0,1,3)$	$(0,0,3)$	$(0,0,3)$
4	$(1,0,1)$	$(1,1,2)$	$(0,1,3)$	$(0,0,4)$	$(0,0,4)$
5	$(1,0,1)$	$(1,1,2)$	$(0,1,3)$	$(0,0,5)$	$(0,0,5)$
\vdots	\vdots	\vdots	\vdots	\vdots	\vdots
k	$(1,0,1)$	$(1,1,2)$	$(0,1,3)$	$(0,0, k)$	$(0,0, k)$
\vdots	\vdots	\vdots	\vdots	\vdots	\vdots

What are the conditions needed if distribution is dropped?

For a non-distributed structure $S=(S, \oplus, F)$, can be used to find local optima when the following property holds.

Increasing

$$
1: \forall a \in S: a \neq \alpha \Longrightarrow a<{ }_{\oplus}^{\mathrm{L}} f(a)
$$

In order to derive I we often need the non-decreasing property:

$$
N D: \forall a \in S: a \leq_{\oplus}^{\mathrm{L}} f(a)
$$

Some Rules

$$
\begin{aligned}
\mathrm{I}(S \overrightarrow{\times} T) & \Longleftrightarrow \mathrm{I}(S) \vee(\mathrm{ND}(S) \wedge \mathrm{I}(T)) \\
\mathrm{ND}(S \overrightarrow{\times} T) & \Longleftrightarrow \mathrm{I}(S) \vee(\mathrm{ND}(S) \wedge \mathrm{ND}(T)) \\
\mathrm{I}(S+\mathrm{m} T) & \Longleftrightarrow \mathrm{I}(S) \wedge \mathrm{I}(T) \\
\mathrm{ND}(S+\mathrm{m} T) & \Longleftrightarrow \mathrm{ND}(S) \wedge \mathrm{ND}(T) \\
\mathrm{I}(S \Theta T) & \Longleftrightarrow \mathrm{I}(S) \wedge \mathrm{I}(T)
\end{aligned}
$$

Could BGP be fixed?

- Suppose bgp = ebgpӨibgp
- For I(bgp) to hold, we need at least ND(ebgp)
- Suppose ebgp = economics $\overrightarrow{\times}$ aspaths $\overrightarrow{\times}$ te
- Since we can probably get $\mathrm{I}($ aspaths $\overrightarrow{\times}$ te), all we need is ND(economics).

One Modest Proposal

The Customer/Provider/Peer Algebra ([Sob05])

\diamond	C	R	P	∞
c	C	∞	∞	∞
r	R	R	∞	∞
p	P	P	P	∞

Improve to model backup routes ([GS05])

\diamond	$(1, C)$	$(1, R)$	$(1, P)$	$(2, C)$	$(2, R)$	$(2, P)$	$(3, C)$	$(3, R$
c	$(1, C)$	$(2, C)$	$(2, C)$	$(2, C)$	$(3, C)$	$(3, C)$	$(3, C)$	∞
r	$(1, R)$	$(1, R)$	$(2, R)$	$(2, R)$	$(2, R)$	$(3, R)$	$(3, R)$	$(3, R$
p	$(1, P)$	$(1, P)$	$(1, P)$	$(2, P)$	$(2, P)$	$(2, P)$	$(3, P)$	$(3, P$

This is an algebraic presentation of an idea that appeared earlier in [GGR01].

Prehistory : The Stable Paths Problem (SPP) [GSW02]

GOOD GADGET
(a)

A routing tree
(b)

More SPP examples

Proof from [GG08]

Assumptions

- Let $S=(S, \oplus, \otimes)$ be a bisemigroup where
- \oplus is idempotent ($a=a \oplus a$)
- \oplus is commutative $(a \oplus b=b \oplus a)$
\oplus is selective ($a \oplus b=a \vee a \oplus b=b$)
- Note that this means that $\leq=\leq_{\oplus}^{\mathrm{L}}$ is a total order.
- α_{\oplus} and α_{\otimes} exist
- $\alpha_{\oplus}=\omega_{\otimes}$

Assume that S is increasing

$$
\mathrm{I}: \forall a, b \in S: a \neq \alpha_{\oplus} \Longrightarrow a<_{\oplus}^{\mathrm{L}} b \otimes a
$$

$S_{(i, j)}^{k}$

Let A be an adjacency matrix over S. Since \oplus is selective, for each $i \neq j$ there exists $s_{(i, j)}^{k} \in N(i) \equiv\{s \mid(i, s) \in E\}$ such that

$$
A^{[k+1]}(i, j)=\sum_{s \in N(i)} w(i, s) \otimes B(s, j)=w\left(i, s_{(i, j)}^{k}\right) \otimes A^{[k]}\left(s_{(i, j)}^{k}, j\right)
$$

We assume that we have a deterministic method of selecting a unique $s_{(i, j)}^{k}$.

Histories

Histories

- Inspired by constructs of the same name in [GWOO] that record causal chains of events in an asynchronous protocol.
- The history of $A^{[k]}(i, j)$, denoted $H^{[k]}(i, j)$, will in some sense explain how the value $A^{[k]}(i, j)$ came to be adopted at step k of the iteration.

$$
\begin{aligned}
H^{[0]}(i, j) & =\left(\alpha_{\otimes}\right) \\
H^{[k+1]}(i, j) & = \begin{cases}H^{[k]}(i, j) & \text { if } A^{[k]}(i, j)=A^{[k+1]}(i, j), \\
\left.H^{[k]}\left(s_{(i, j)}^{k}\right), j\right), A^{[k+1]}(i, j) & \text { if } A^{[k+1]}(i, j) \ll_{L}^{\oplus} A^{[k]}(i, j) \\
H^{[k]}\left(S_{(i, j)}^{k-1}, j\right), A^{[k]}(i, j) & \text { if } A^{[k]}(i, j) \ll_{L}^{\oplus} A^{[k+1]}(i, j)\end{cases}
\end{aligned}
$$

Observations

- If $A^{[k+1]}(i, j)<{ }_{L}^{\oplus} A^{[k]}(i, j)$, then node i obtained a more preferred value at step $k+1$.
- In this case the history $H^{[k+1]}(i, j)$ is the sequence $H^{[k]}\left(S_{(i, j)}^{k}, j\right), A^{[k+1]}(i, j)$, where $H^{[k]}\left(s_{(i, j)}^{k}, j\right)$ is a history explaining how value $A^{[k]}\left(s_{(i, j)}^{k}, j\right)$ was adopted at state k.
- Since $A^{[k+1]}(i, j)=w\left(i, s_{(i, j)}^{k}\right) \otimes A^{[k]}\left(s_{(i, j)}^{k}, j\right)$, the complete history explains how $A^{[k+1]}(i, j)$ was adopted at step $k+1$.

Further observations

- On the other hand, when $A^{[k]}(i, j)<_{L}^{\oplus} A^{[k+1]}(i, j)$, then node i lost a more preferred value at step $k+1$.
- In this case the history $H^{[k+1]}(i, j)$ is the sequence $H^{[k]}\left(s_{(i, j)}^{k-1}, j\right), A^{[k]}(i, j)$, which ends in the value lost at step $k+1$.
- Since this lost value is $A^{[k]}(i, j)=w\left(i, s_{(i, j)}^{k-1}\right) \otimes A^{[k-1]}\left(s_{(i, j)}^{k-1}, j\right)$, the sequence $H^{[k]}\left(s_{(i, j)}^{k-1}, j\right)$ explains how node $s_{(i, j)}^{k-1}$ came to adopt $A^{[k]}\left(s_{(i, j)}^{k-1}, j\right)$ at step k, thus forcing node i to abandon $A^{[k]}(i, j)$ at step $k+1$.

Violations of Monotonicity

(left) Monotonicity

$$
\forall a, b, c \in S: a \leq b \rightarrow c \otimes a \leq c \otimes b
$$

Define the dispute relation D_{S} to record violations of montonicity:

$$
D_{S} \equiv\{(a, c \otimes b) \mid a, b, c \in S, a \leq b \wedge c \otimes b<c \otimes a\}
$$

In addition, define a relation

$$
T_{S} \equiv\left\{(a, b \otimes a) \mid a, b \in S, b \neq \alpha_{\otimes}\right\}
$$

Generalized dispute digraph

The generalized dispute digraph is then defined as the relation

$$
\mathfrak{D}_{S}=\left(T_{S} \cup D_{S}\right)^{t c}
$$

where tc denotes the transitive closure.

Increasing

Lemma

If \mathcal{S} is increasing, then $\mathfrak{D}_{S} \subseteq<$.
Proof: If $(a, b \otimes a) \in T_{S}$, then if S is increasing we have $a<b \otimes a$. If $(a, c \otimes b) \in D_{S}$, then $a \leq b$, and if S is increasing then $b<c \otimes b$, so $a<c \otimes b$.

Two Lemmas ...

A \mathfrak{D}_{S} sequence σ is

- any non-empty sequence of values over S
- such that if $\sigma=a_{1}, a_{2}, \ldots, a_{k}$, for $2 \leq k$, then for each $1 \leq i<k$ we have $\left(a_{i}, a_{i+1}\right) \in \mathfrak{D}_{s}$.

Lemma

For each k, i, and $j, H^{[k]}(i, j)$ is a \mathfrak{D}_{S} sequence.

Lemma

Suppose that $A^{[k]}(i, j) \neq A^{[k+1]}(i, j)$, then $\left|H^{[k+1]}(i, j)\right|=k+1$.

... and a Theorem

Theorem

If S is an increasing bisemigroup and only simple paths are allowed, then there must exist a k such that $A^{[k]}=A^{[k+1]}$. Thus $B=A^{[k]}$ is a solution to the equation $B=I \oplus(A \otimes B)$.

Proof : Suppose that k does not exist. Since only simple paths are allowed, the set of values $w(p)$ for all paths p is finite. Since histories must grow without bound there must at some point be an a such that $(a, a) \in \mathfrak{D}_{S}$, which contradicts Lemma 7 .

Remark

SPP theory also used the concept of dispute wheels while Sobrinho's theory [Sob05] used the related concept of non-free cycles. These concepts are related to generalized dispute digraphs.

A few lemmas

Lemma

Suppose that $a_{1} \Re_{S} a_{2} \Re_{S} a_{3}$. That is, there exists b_{1} and b_{2} such that

$$
a_{1} \leq_{R}^{\otimes} b_{1} \otimes a_{1}<_{L}^{\oplus} a_{2} \leq_{R}^{\otimes} b_{2} \otimes a_{2}<_{L}^{\oplus} a_{3} .
$$

Then either $a_{1} \leq_{R}^{\otimes} a_{3}$ or $\left(b_{1} \otimes a_{1}, b_{2} \otimes a_{2}\right) \in \mathfrak{D}_{s}$.

Corollary
 If $(a, a) \in \mathfrak{R}_{S}$, then $(a, a) \in \mathfrak{D}_{S}$.

In particular, if S is an increasing bisemigroup, then we know that all cycles are free and that dispute wheels cannot exist.

Proof of Lemma 8

The proof is by induction on k. The base case is clear. Suppose every entry of $H^{[k]}$ is a \mathfrak{D}_{S} sequence. The analysis of $H^{[k+1]}(i, j)$ is in three cases.

Case 1: $A^{[k]}(i, j)=A^{[k+1]}(i, j)$. Then $H^{[k+1]}(i, j)=H^{[k]}(i, j)$ and the claim holds.

Proof of Lemma 8

bf Case 2: $A^{[k+1]}(i, j)<A^{[k]}(i, j)$, so we have

$$
\begin{aligned}
w\left(i, s_{(i, j)}^{k}\right) \otimes A^{[k]}\left(s_{(i, j)}^{k}, j\right) & <w\left(i, s_{(i, j)}^{k-1}\right) \otimes A^{[k-1]}\left(s_{(i, j)}^{k-1}, j\right) \\
& \leq w\left(i, s_{(i, j)}^{k}\right) \otimes A^{[k-1]}\left(s_{(i, j)}^{k}, j\right) .
\end{aligned}
$$

So $H^{[k+1]}(i, j)=H^{[k]}\left(s_{(i, j)}^{k}, j\right), A^{[k+1]}(i, j)$, and there are three sub-cases to consider:

Case 2.1: $A^{[k-1]}\left(s_{(i, j)}^{k}, j\right)=A^{[k]}\left(s_{(i, j)}^{k}, j\right)$. This is not possible.
Case 2.2: $A^{[k]}\left(s_{(i, j)}^{k}, j\right)<A^{[k-1]}\left(s_{(i, j)}^{k}, j\right)$. Then
$\left(A^{[k]}\left(s_{(i, j)}^{k}, j\right), w\left(i, s_{(i, j)}^{k}\right) \otimes A^{[k]}\left(s_{(i, j)}^{k}, j\right)\right)$ is in T_{S}, and since $H^{[k]}\left(s_{(i, j)}^{k}, j\right)$ ends in $A^{[k]}\left(s_{(i, j)}^{k}, j\right)$, it follows that $H^{[k+1]}(i, j)$ is a \mathfrak{D}_{S} sequence.
Case 2.3: $A^{[k-1]}\left(s_{(i, j)}^{k}, j\right)<A^{[k]}\left(s_{(i, j)}^{k}, j\right)$. Then $\left(A^{[k-1]}\left(s_{(i, j)}^{k}, j\right), A^{[k+1]}(i, j)\right)$ is in D_{S}, and since $H^{[k]}\left(s_{(i, j)}^{k}, j\right)$ ends in the value $A^{[k-1]}\left(s_{(i, j)}^{k}, j\right)$, it follows that $H^{[k+1]}(i, j)$ is a \mathfrak{D}_{S} sequence.

Proof of Lemma 8

Case 3: $A^{[k]}(i, j)<A^{[k+1]}(i, j)$, so we have

$$
\begin{aligned}
w\left(i, s_{(i, j)}^{k-1}\right) \otimes A^{[k-1]}\left(s_{(i, j)}^{k-1}, j\right) & <w\left(i, s_{(i, j)}^{k}\right) \otimes A^{[k]}\left(s_{(i, j)}^{k}, j\right) \\
& \leq w\left(i, s_{(i, j)}^{k-1}\right) \otimes A^{[k]}\left(s_{(i, j)}^{k-1}, j\right) .
\end{aligned}
$$

In this case $H^{[k+1]}(i, j)=H^{[k]}\left(s_{(i, j)}^{k-1}, j\right), A^{[k]}(i, j)$. There are three sub-cases to consider:

Case 3.1: $A^{[k-1]}\left(s_{(i, j)}^{k-1}, j\right)=A^{[k]}\left(s_{(i, j)}^{k-1}, j\right)$. This is not possible.
Case 3.2: $A^{[k]}\left(s_{(i, j)}^{k-1}, j\right)<A^{[k-1]}\left(s_{(i, j)}^{k-1}, j\right)$. Then

$$
\left(A^{[k]}\left(s_{(i, j)}^{k-1}, j\right), w\left(i, s_{(i, j)}^{k-1}\right) \otimes A^{[k-1]}\left(s_{(i, j)}^{k-1}, j\right)\right) \in D_{S},
$$

and since $H^{[k]}\left(s_{(i, j)}^{k-1}, j\right)$ ends in $A^{[k]}\left(s_{(i, j)}^{k-1}, j\right), H^{[k+1]}(i, j)$ is a \mathfrak{D}_{S} sequence.
Case 3.3: $A^{[k-1]}\left(s_{(i, j)}^{k-1}, j\right)<A^{[k]}\left(s_{(i, j)}^{k-1}, j\right)$. Then $H^{[k]}\left(s_{(i, j)}^{k-1}, j\right)$ ends in the value $A^{[k-1]}\left(s_{(i, j)}^{k-1}, j\right)$, and

$$
\left(A^{[k-1]}\left(s_{(i, j)}^{k-1}, j\right), w\left(i, s_{(i, j)}^{k-1}\right) \otimes A^{[k-1]}\left(s_{(i, j)^{\prime}}^{k-1}, j\right)\right) \in T_{\underline{\underline{s}}},
$$

Bibliography I

[GG07] A. Gurney and T. G. Griffin.
Lexicographic products in metarouting.
In Proc. Inter. Conf. on Network Protocols, October 2007.
[GG08] T. G. Griffin and A. Gurney.
Increasing bisemigroups and algebraic routing.
In 10th International Conference on Relational Methods in Computer Science (RelMiCS10), April 2008.
[GGR01] Timothy G. Griffin, Lixin Gao, and Jennifer Rexford. Inherently safe backup routing with BGP.
In Proc. IEEE INFOCOM, April 2001.
[GM08] M. Gondran and M. Minoux.
Graphs, Dioids, and Semirings : New Models and Algorithms.
Springer, 2008.

Bibliography II

[GS05] Timothy G. Griffin and João Luís Sobrinho.
Metarouting.
In Proc. ACM SIGCOMM, August 2005.
[GSW02] Timothy G. Griffin, F. Bruce Shepherd, and Gordon Wilfong.
The stable paths problem and interdomain routing.
IEEE/ACM Transactions on Networking, 10(2):232-243,
April 2002.
[Gur08] Alexander Gurney.
Designing routing algebras with meta-languages.
Thesis in progress, 2008.
[GW00] Timothy Griffin and Gordon Wilfong.
A safe path vector protocol.
In Proc. IEEE INFOCOM, March 2000.

Bibliography III

[Sai70] Tôru Saitô.
Note on the lexicographic product of ordered semigroups. Proceedings of the Japan Academy, 46(5):413-416, 1970.
[Sob05] Joao Luis Sobrinho.
An algebraic theory of dynamic network routing. IEEE/ACM Transactions on Networking, 13(5):1160-1173, October 2005.

