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(Modified) Outline

Part I (Monday)
I Review of classical theory

Part II (Tuesday)
I Functions as arc weights
I Live dangerously — drop distribution!

F Model BGP-like protocols

Part III (Wednesday)
I Present a constructive approach
I Metarouting
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Path Weight with functions on arcs?

Semiring Path Weight
Path p = i1, i2, i3, · · · , ik ,

w(p) = w(i1, i2)⊗ w(i2, i3)⊗ · · · ⊗ w(ik−1, ik ).

How about functions on arcs?
For graph G = (V , E) with w : E → (S → S)

w(p) = w(i1, i2)(w(i2, i3)(· · ·w(ik−1, ik )(a) · · · )),

where a is some value originated by node ik

How can we make this work?
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ASPATHs from BGP

Think of ASPATHs in BGP.
the type of “arc labels” and the path values are different.
So binary operators don’t quite work.

NADA 

[8, 4, 37] 
(17, 22) 

[22, 8, 4, 37] 

[8, 17, 37] 

(17, 22) 

We could model this as some kind of function on the arc.
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(left) Cayley transformation

Let’s turn the multiplicative semigroup into a set of functions in order to
get some inspiration!

(S, ⊗) a semigroup
For a ∈ S, define the function fa so that for all b ∈ S, fa(b) = a⊗ b
Let F⊗ = {fa | a ∈ S}

The notation h = f ◦ g means that for all a, h(a) = f (g(a)).

Lemma
If f , g ∈ F⊗, then f ◦ g ∈ F⊗.

Proof :

(fa ◦ fb)(c) = fa(fb(c)) = a⊗ (b ⊗ c) = (a⊗ b)⊗ c = fa⊗b(c)
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How do properties translate?

(S, ⊕,⊗) (S, ⊕, F⊗)

a⊗ (b ⊕ c) = (a⊗ b)⊕ (a⊗ c) f (b ⊕ c) = f (b)⊕ f (c)
α⊕ = ω⊗ f (α⊕) = α⊕
α⊕ = ω⊗ ∃ω ∈ F ∀a ∈ S : ω(a) = α⊕
∃α⊗ ∃i ∈ F ∀a ∈ S : i(a) = a

Can we generalize this to a new kind of algebraic structure?
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Algebra of Monoid Endomorphisms ([GM08])

A homomorphism is a function that preserves structure. An
endomprhism is a homomorphism mapping a structure to itself.

Let (S, ⊕, α) be a commutative monoid.

(S,⊕,F ⊆ S → S) is a algebra of monoid endomorphisms (AME) if
∀f ∈ F ∀b, c ∈ S : f (b ⊕ c) = f (b)⊕ f (c)

∀f ∈ F : f (α) = α

∃i ∈ F ∀a ∈ S : i(a) = a
∃ω ∈ F ∀a ∈ S : ω(a) = α
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Solving (some) equations over a AMEs
We will be interested in solving for x equations of the form

x = f (x)⊕ b

Let
f 0 = i

f k+1 = f ◦ f k

and

f (k)(b) = f 0(b) ⊕ f 1(b) ⊕ f 2(b) ⊕ · · · ⊕ f k (b)

f (∗)(b) = f 0(b) ⊕ f 1(b) ⊕ f 2(b) ⊕ · · · ⊕ f k (b)⊕ · · ·

Definition (q stability)

If there exists a q such that for all b f (q)(b) = f (q+1)(b), then f is
q-stable. Therefore, f (∗)(b) = f (q)(b).
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Key result (again)

Lemma
If f is q-stable, then x = f (∗)(b) solves the AME equation

x = f (x) ⊕ b.

Proof: Substitute f (∗)(b) for x to obtain

f (f (∗)(b)) ⊕ b
= f (f (q)(b)) ⊕ b
= f (f 0(b) ⊕ f 1(b) ⊕ f 2(b) ⊕ · · · ⊕ f q(b)) ⊕ b
= f 1(b) ⊕ f 1(b) ⊕ f 2(b) ⊕ · · · ⊕ f q+1(b) ⊕ b
= f 0(b)⊕ f 1(b) ⊕ f 1(b) ⊕ f 2(b) ⊕ · · · ⊕ f q+1(b)

= f (q+1)(b)

= f (q)(b)

= f (∗)(b)
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AME of Matrices

Given an AME S = (S, ⊕, F ), define the semiring of n × n-matrices
over S,

Mn(S) = (Mn(S), �, G),

where for A,B ∈Mn(S) we have

(A � B)(i , j) = A(i , j)⊕ B(i , j).

Elements of the set G are represented by n× n matrices of functions in
F . That is, each function in G is represented by a matrix A with
A(i , j) ∈ F . If B ∈Mn(S) then define A(B) so that

(A(B))(i , j) =
⊕∑

1≤q≤n

A(i , q)(B(q, j)).
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Here we go again...

Path Weight
For graph G = (V , E) with w : E → F
The weight of a path p = i1, i2, i3, · · · , ik is then calculated as

w(p) = w(i1, i2)(w(i2, i3)(· · ·w(ik−1, ik )(ω⊕) · · · )).

adjacency matrix

A(i , j) =

{
w(i , j) if (i , j) ∈ E ,
ω otherwise

We want to solve equations like these

X = A(X) � B
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So why do we need Monoid Endomorphisms??

Monoid Endomorphisms can be viewed as semirings
Suppose (S, ⊕, F ) is a monoid of endomorphisms. We can turn it into
a semiring

(F , ⊕̂, ◦)

where (f ⊕̂ g)(a) = f (a)⊕ g(a)

Functions are hard to work with....
All algorithms need to check equality over elements of semiring,
f = g means ∀a ∈ S : f (a) = g(a),
S can be very large, or infinite.
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Lexicographic product of AMEs

(S, ⊕S, F ) ~× (T , ⊕T , G) = (S × T , ⊕S ~×⊕T , F ×G)

Theorem ([Sai70, GG07, Gur08])

M(S ~× T ) ⇐⇒ M(S) ∧ M(T ) ∧ (C(S) ∨ K(T ))

Where
Property Definition
M ∀a,b, f : f (a⊕ b) = f (a)⊕ f (b)
C ∀a,b, f : f (a) = f (b) =⇒ a = b
K ∀a,b, f : f (a) = f (b)
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Functional Union of AMEs

(S, ⊕, F ) +m (S, ⊕, G) = (S, ⊕, F ∪G)

Fact

M(S +m T ) ⇐⇒ M(S) ∧ M(T )

Where
Property Definition
M ∀a,b, f : f (a⊕ b) = f (a)⊕ f (b)
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Left and Right
right

right(S,⊕,F ) = (S,⊕, {i})

left

left(S,⊕,F ) = (S,⊕,K (S))

where K (S) represents all constant functions over S. For a ∈ S, define
the function κa(b) = a. Then K (S) = {κa | a ∈ S}.

Facts
The following are always true.

M(right(S))
M(left(S)) (assuming ⊕ is idempotent)
C(right(S))
K(left(S))
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Motivate Scoped product
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Scoped Product

SΘT = (S ~× left(T )) +m (right(S) ~× T )

Theorem

M(SΘT ) ⇐⇒ M(S) ∧ M(T ).

Proof.

M(SΘT )

M((S ~× left(T )) +m (right(S) ~× T ))

⇐⇒ M(S ~× left(T )) ∧ M(right(S) ~× T )

⇐⇒ M(S) ∧ M(left(T )) ∧ (C(S) ∨ K(left(T )))

∧ M(right(S)) ∧ M(T ) ∧ (C(right(S)) ∨ K(T ))

⇐⇒ M(S) ∧ M(T )
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Delta Product (OSPF-like?)

S∆T = (S ~× T ) +m (right(S) ~× T )

Theorem

M(S∆T ) ⇐⇒ M(S) ∧ M(T ) ∧ (C(S) ∨ K(T )).

Proof.

M(SΘT )

M((S ~× T ) +m (right(S) ~× T ))

⇐⇒ M(S ~× T ) ∧ M(right(S) ~× T )

⇐⇒ M(S) ∧ M(left(T )) ∧ (C(S) ∨ K(T ))

∧ M(right(S)) ∧ M(T ) ∧ (C(right(S)) ∨ K(T ))

⇐⇒ M(S) ∧ M(T ) ∧ (C(S) ∨ K(T ))
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How do we represent functions?
Definition (Action)
An action (S, L, ♦) is made up of non-empty sets S and L, and a
function

♦ ∈ L→ (S → S).

We often write l♦s rather than ♦(l)(s).

Think of L as an index set for a set of functions, fl(s) = l♦s.

Example : mildly abstract description of ASPATHs
Let apaths(X ) = (S, L, ♦) where

S = X ∗ ∪ {∞}
L = X × X

(m, n) ♦∞ = ∞

(m, n) ♦ l =

{
cons(n, l) (if m 6∈ l)
∞ (otherwise)
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Could BGP be distributive?

Suppose bgp = ebgpΘibgp
For M(bgp) to hold, we need at least M(ebgp)

Suppose ebgp = economics ~× aspaths ~× te
This means we must have M(economics) and C(economics)
since we will never have K(aspaths ~× te).
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What if we drop the distribution requirement?

R = ({0,1},max,min) ~× ({0,1},min,max) ~× (N ∪ {∞},min,+).

A D1

O B C

D2

(1,0,1)
??�������

(0,0,1)
//

a

��>>>>>>>>

(0,0,1)
//

(0,0,1)
88qqqqqqqqqqqqq

(0,0,1) &&MMMMMMMMMMMMM (0,0,1)

��

(0,0,1)

KK
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Progress of the iteration when a = (1, 0, n)

step A B C D1 D2
1 (1,0,1) (0,0,1) — — —
2 (1,0,1) (1,0,n + 1) (0,0,2) — —
3 (1,0,1) (1,0,n + 1) (0,0,n + 2) (0,0,3) (0,0,3)
4 (1,0,1) (1,0,n + 1) (0,0,n + 2) (0,0,4) (0,0,4)
5 (1,0,1) (1,0,n + 1) (0,0,n + 2) (0,0,5) (0,0,5)
...

...
...

...
...

...
n + 3 (1,0,1) (1,0,n + 1) (0,0,n + 2) (0,0,n + 3) (0,0,n + 3)
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Progress of the iteration when a = (1, 1, 1)

step A B C D1 D2
1 (1,0,1) (0,0,1) — — —
2 (1,0,1) (1,1,2) (0,0,2) — —
3 (1,0,1) (1,1,2) (0,1,3) (0,0,3) (0,0,3)
4 (1,0,1) (1,1,2) (0,1,3) (0,0,4) (0,0,4)
5 (1,0,1) (1,1,2) (0,1,3) (0,0,5) (0,0,5)
...

...
...

...
...

...
k (1,0,1) (1,1,2) (0,1,3) (0,0, k) (0,0, k)
...

...
...

...
...

...
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What are the conditions needed if distribution is
dropped?

For a non-distributed structure S = (S, ⊕, F ), can be used to find
local optima when the following property holds.

Increasing

I : ∀a ∈ S : a 6= α =⇒ a <L
⊕ f (a)

In order to derive I we often need the non-decreasing property:

ND : ∀a ∈ S : a ≤L
⊕ f (a)
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Some Rules

I(S ~× T ) ⇐⇒ I(S) ∨ (ND(S) ∧ I(T ))

ND(S ~× T ) ⇐⇒ I(S) ∨ (ND(S) ∧ ND(T ))

I(S +m T ) ⇐⇒ I(S) ∧ I(T )

ND(S +m T ) ⇐⇒ ND(S) ∧ ND(T )

I(SΘT ) ⇐⇒ I(S) ∧ I(T )
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Could BGP be fixed?

Suppose bgp = ebgpΘibgp
For I(bgp) to hold, we need at least ND(ebgp)

Suppose ebgp = economics ~× aspaths ~× te
Since we can probably get I(aspaths ~× te), all we need is
ND(economics).
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One Modest Proposal

The Customer/Provider/Peer Algebra ([Sob05])

♦ C R P ∞
c C ∞ ∞ ∞
r R R ∞ ∞
p P P P ∞

Improve to model backup routes ([GS05])

♦ (1, C) (1, R) (1, P) (2, C) (2, R) (2, P) (3, C) (3, R) (3, P) ∞
c (1, C) (2, C) (2, C) (2, C) (3, C) (3, C) (3, C) ∞ ∞ ∞
r (1, R) (1, R) (2, R) (2, R) (2, R) (3, R) (3, R) (3, R) ∞ ∞
p (1, P) (1, P) (1, P) (2, P) (2, P) (2, P) (3, P) (3, P) (3, P) ∞

This is an algebraic presentation of an idea that appeared earlier
in [GGR01].
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Prehistory : The Stable Paths Problem (SPP)
[GSW02]
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More SPP examples
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Proof from [GG08]

Assumptions
Let S = (S, ⊕, ⊗) be a bisemigroup where

I ⊕ is idempotent (a = a⊕ a)
I ⊕ is commutative (a⊕ b = b ⊕ a)
I ⊕ is selective (a⊕ b = a ∨ a⊕ b = b)

Note that this means that ≤=≤L
⊕ is a total order.

α⊕ and α⊗ exist
α⊕ = ω⊗

Assume that S is increasing

I : ∀a,b ∈ S : a 6= α⊕ =⇒ a <L
⊕ b ⊗ a
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sk
(i,j)

Let A be an adjacency matrix over S. Since ⊕ is selective, for each
i 6= j there exists sk

(i,j) ∈ N(i) ≡ {s | (i , s) ∈ E} such that

A[k+1](i , j) =
∑

s∈N(i)

w(i , s)⊗ B(s, j) = w(i , sk
(i,j))⊗ A[k ](sk

(i,j), j)

We assume that we have a deterministic method of selecting a unique
sk
(i,j).
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Histories

Histories
Inspired by constructs of the same name in [GW00] that record
causal chains of events in an asynchronous protocol.
The history of A[k ](i , j), denoted H [k ](i , j), will in some sense
explain how the value A[k ](i , j) came to be adopted at step k of
the iteration.

H [0](i , j) = (α⊗)

H [k+1](i , j) =


H [k ](i , j) if A[k ](i , j) = A[k+1](i , j),

H [k ](sk
(i,j), j), A[k+1](i , j) if A[k+1](i , j) <⊕L A[k ](i , j),

H [k ](sk−1
(i,j) , j), A[k ](i , j) if A[k ](i , j) <⊕L A[k+1](i , j).
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Observations

If A[k+1](i , j) <⊕L A[k ](i , j), then node i obtained a more preferred
value at step k + 1.

I In this case the history H [k+1](i , j) is the sequence
H [k ](sk

(i,j), j), A[k+1](i , j), where H [k ](sk
(i,j), j) is a history explaining

how value A[k ](sk
(i,j), j) was adopted at state k .

I Since A[k+1](i , j) = w(i , sk
(i,j))⊗ A[k ](sk

(i,j), j), the complete history
explains how A[k+1](i , j) was adopted at step k + 1.
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Further observations

On the other hand, when A[k ](i , j) <⊕L A[k+1](i , j), then node i lost
a more preferred value at step k + 1.

I In this case the history H [k+1](i , j) is the sequence
H [k ](sk−1

(i,j) , j), A[k ](i , j), which ends in the value lost at step k + 1.
I Since this lost value is A[k ](i , j) = w(i , sk−1

(i,j) )⊗ A[k−1](sk−1
(i,j) , j), the

sequence H [k ](sk−1
(i,j) , j) explains how node sk−1

(i,j) came to adopt
A[k ](sk−1

(i,j) , j) at step k , thus forcing node i to abandon A[k ](i , j) at
step k + 1.
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Violations of Monotonicity
(left) Monotonicity

∀a,b, c ∈ S : a ≤ b → c ⊗ a ≤ c ⊗ b.

Define the dispute relation DS to record violations of montonicity:

DS ≡ {(a, c ⊗ b) | a,b, c ∈ S, a ≤ b ∧ c ⊗ b < c ⊗ a}

In addition, define a relation

TS ≡ {(a, b ⊗ a) | a, b ∈ S, b 6= α⊗}.

Generalized dispute digraph
The generalized dispute digraph is then defined as the relation

DS = (TS ∪ DS)tc ,

where tc denotes the transitive closure.
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Increasing

Lemma

If S is increasing, then DS ⊆ <.

Proof: If (a, b ⊗ a) ∈ TS, then if S is increasing we have a < b ⊗ a. If
(a, c ⊗ b) ∈ DS, then a ≤ b, and if S is increasing then b < c ⊗ b, so
a < c ⊗ b.
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Two Lemmas ...

A DS sequence σ is
any non-empty sequence of values over S
such that if σ = a1,a2, . . . ,ak , for 2 ≤ k , then for each 1 ≤ i < k
we have (ai , ai+1) ∈ DS.

Lemma

For each k, i, and j, H [k ](i , j) is a DS sequence.

Lemma

Suppose that A[k ](i , j) 6= A[k+1](i, j), then | H [k+1](i , j) |= k + 1.

T. Griffin (cl.cam.ac.uk) An Algebraic Approach to Internet Routing Part II UC3M 03/2009 37 / 45



... and a Theorem

Theorem

If S is an increasing bisemigroup and only simple paths are allowed,
then there must exist a k such that A[k ] = A[k+1]. Thus B = A[k ] is a
solution to the equation B = I ⊕ (A⊗ B).

Proof : Suppose that k does not exist. Since only simple paths are
allowed, the set of values w(p) for all paths p is finite. Since histories
must grow without bound there must at some point be an a such that
(a, a) ∈ DS, which contradicts Lemma 7.

Remark
SPP theory also used the concept of dispute wheels while Sobrinho’s
theory [Sob05] used the related concept of non-free cycles. These
concepts are related to generalized dispute digraphs.
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A few lemmas

Lemma

Suppose that a1 RS a2 RS a3. That is, there exists b1 and b2 such that

a1 ≤⊗R b1 ⊗ a1 <
⊕
L a2 ≤⊗R b2 ⊗ a2 <

⊕
L a3.

Then either a1 ≤⊗R a3 or (b1 ⊗ a1, b2 ⊗ a2) ∈ DS.

Corollary

If (a, a) ∈ RS, then (a, a) ∈ DS.

In particular, if S is an increasing bisemigroup, then we know that all
cycles are free and that dispute wheels cannot exist.
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Proof of Lemma 8

The proof is by induction on k . The base case is clear. Suppose every
entry of H [k ] is a DS sequence. The analysis of H [k+1](i , j) is in three
cases.

Case 1 : A[k ](i , j) = A[k+1](i , j). Then H [k+1](i , j) = H [k ](i , j) and
the claim holds.
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Proof of Lemma 8
bf Case 2: A[k+1](i , j) < A[k ](i , j), so we have

w(i , sk
(i,j))⊗ A[k ](sk

(i,j), j) < w(i , sk−1
(i,j) )⊗ A[k−1](sk−1

(i,j) , j)

≤ w(i , sk
(i,j))⊗ A[k−1](sk

(i,j), j).

So H [k+1](i , j) = H [k ](sk
(i,j), j), A[k+1](i , j), and there are three

sub-cases to consider:
Case 2.1: A[k−1](sk

(i,j), j) = A[k ](sk
(i,j), j). This is not possible.

Case 2.2: A[k ](sk
(i,j), j) < A[k−1](sk

(i,j), j). Then
(A[k ](sk

(i,j), j), w(i , sk
(i,j))⊗A[k ](sk

(i,j), j)) is in TS, and since
H [k ](sk

(i,j), j) ends in A[k ](sk
(i,j), j), it follows that

H [k+1](i , j) is a DS sequence.
Case 2.3: A[k−1](sk

(i,j), j) < A[k ](sk
(i,j), j). Then

(A[k−1](sk
(i,j), j), A[k+1](i , j)) is in DS, and since

H [k ](sk
(i,j), j) ends in the value A[k−1](sk

(i,j), j), it follows
that H [k+1](i , j) is a DS sequence.
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Proof of Lemma 8
Case 3: A[k ](i , j) < A[k+1](i , j), so we have

w(i , sk−1
(i,j) )⊗ A[k−1](sk−1

(i,j) , j) < w(i , sk
(i,j))⊗ A[k ](sk

(i,j), j)

≤ w(i , sk−1
(i,j) )⊗ A[k ](sk−1

(i,j) , j).

In this case H [k+1](i , j) = H [k ](sk−1
(i,j) , j), A[k ](i , j). There are three

sub-cases to consider:
Case 3.1: A[k−1](sk−1

(i,j) , j) = A[k ](sk−1
(i,j) , j). This is not possible.

Case 3.2: A[k ](sk−1
(i,j) , j) < A[k−1](sk−1

(i,j) , j). Then

(A[k ](sk−1
(i,j) , j), w(i , sk−1

(i,j) )⊗ A[k−1](sk−1
(i,j) , j)) ∈ DS,

and since H [k ](sk−1
(i,j) , j) ends in A[k ](sk−1

(i,j) , j), H [k+1](i , j)
is a DS sequence.

Case 3.3: A[k−1](sk−1
(i,j) , j) < A[k ](sk−1

(i,j) , j). Then H [k ](sk−1
(i,j) , j) ends in

the value A[k−1](sk−1
(i,j) , j), and

(A[k−1](sk−1
(i,j) , j), w(i , sk−1

(i,j) )⊗ A[k−1](sk−1
(i,j) , j)) ∈ TS,
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